

 Navigation

 	
 index

 	Doctrine 2 Migrations 2.2 documentation

Welcome to Doctrine 2 Migrations documentation!

Here is the table of contents.

Getting Started

	Reference:
Introduction |
Migration Classes |
Managing Migrations |
Generating Migrations

 Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Doctrine 2 Migrations 2.2 documentation

Index

 G
 | I
 | M

G

 	

 	Generating Migrations

I

 	

 	Introduction

M

 	

 	Managing Migrations

 	

 	Migration Classes

 Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

reference/introduction.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

1. Introduction

The Doctrine Migrations offer additional functionality on top of the database
abstraction layer (DBAL) for versioning your database schema and easily deploying
changes to it. It is a very easy to use and powerful tool.

In order to use migrations you need to do some setup first.

1.1. Installation

There are two ways to use the Doctrine Migrations project. Either as a supplement
to your already existing Doctrine DBAL (+ ORM) setup or as a standalone “PHP Binary”
(also known as PHAR).

1.1.1. Use as Supplement

To use the Migrations as supplement you have to get the sources from the GitHub
repository, either by downloading them, checking them out as SVN external or as Git Submodule.

Then you have to setup the class loader to load the classes for the DoctrineDBALMigrations
namespace in your project:

require_once '/path/to/migrations/lib/vendor/doctrine-common/Doctrine/Common/ClassLoader';

use Doctrine\Common\ClassLoader;

$classLoader = new ClassLoader('Doctrine\DBAL\Migrations', '/path/to/migrations/lib');
$classLoader->register();

Now the above autoloader is able to load a class like the following:

/path/to/migrations/lib/Doctrine/DBAL/Migrations/Migrations/Migration.php

1.1.2. Register Console Commands

Now that we have setup the autoloaders we are ready to add the migration console
commands to our Doctrine Command Line Interface [http://doctrine-orm.readthedocs.org/en/latest/reference/tools.html#adding-own-commands]:

// ...

$cli->addCommands(array(
 // ...

 // Migrations Commands
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\DiffCommand(),
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\ExecuteCommand(),
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\GenerateCommand(),
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\MigrateCommand(),
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\StatusCommand(),
 new \Doctrine\DBAL\Migrations\Tools\Console\Command\VersionCommand()
));

Additionally you have to make sure the ‘db’ and ‘dialog’ Helpers are added to your Symfony
Console HelperSet.

$db = \Doctrine\DBAL\DriverManager::getConnection($params);
// or
$em = \Doctrine\ORM\EntityManager::create($params);
$db = $em->getConnection();

$helperSet = new \Symfony\Component\Console\Helper\HelperSet(array(
 'db' => new \Doctrine\DBAL\Tools\Console\Helper\ConnectionHelper($db),
 'dialog' => new \Symfony\Component\Console\Helper\DialogHelper(),
));

You will see that you have a few new commands when you execute the following command:

$./doctrine list migrations
Doctrine Command Line Interface version 2.0.0BETA3-DEV

Usage:
 [options] command [arguments]

Options:
 --help -h Display this help message.
 --quiet -q Do not output any message.
 --verbose -v Increase verbosity of messages.
 --version -V Display this program version.
 --color -c Force ANSI color output.
 --no-interaction -n Do not ask any interactive question.

Available commands for the "migrations" namespace:
 :diff Generate a migration by comparing your current database to your mapping information.
 :execute Execute a single migration version up or down manually.
 :generate Generate a blank migration class.
 :migrate Execute a migration to a specified version or the latest available version.
 :status View the status of a set of migrations.
 :version Manually add and delete migration versions from the version table.

1.1.3. PHP Binary / PHAR

You can download the Migrations PHP Binary, which is a standalone PHAR package
file with all the required dependencies. You can drop that single file onto any server
and start using the Doctrine Migrations.

To register a system command for the migrations you can create a simple batch
script, for example on a *nix Environment creating a /usr/local/bin/doctrine-migrations:

#!/bin/sh
php /path/to/doctrine-migrations.phar "$@"

You could now go and use the migrations like:

[shell]
myshell> doctrine-migrations

Because the PHAR file is standalone it does not rely on the Symfony Console ‘db’ Helper,
but you have to pass a –db-configuration parameter that points to a PHP file
which returns the parameters for DoctrineDBALDriverManager::getConnection($dbParams).
If you don’t specify this option Doctrine Migrations will look for a migrations-db.php
file returning that parameters in your current directory and only throw an error if
that is not found.

1.2. Configuration

The last thing you need to do is to configure your migrations. You can do so
by using the –configuration option to manually specify the path
to a configuration file. If you don’t specify any configuration file the tasks will
look for a file named migrations.xml or migrations.yml at the root of
your command line. For the upcoming examples you can use a migrations.xml
file like the following:

<?xml version="1.0" encoding="UTF-8"?>
<doctrine-migrations xmlns="http://doctrine-project.org/schemas/migrations/configuration"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://doctrine-project.org/schemas/migrations/configuration
 http://doctrine-project.org/schemas/migrations/configuration.xsd">

 <name>Doctrine Sandbox Migrations</name>

 <migrations-namespace>DoctrineMigrations</migrations-namespace>

 <table name="doctrine_migration_versions" />

 <migrations-directory>/path/to/migrations/classes/DoctrineMigrations</migrations-directory>

</doctrine-migrations>

Of course you could do the same thing with a configuration.yml file:

name: Doctrine Sandbox Migrations
migrations_namespace: DoctrineMigrations
table_name: doctrine_migration_versions
migrations_directory: /path/to/migrations/classes/DoctrineMigrations

And if you want to specify each migration manually in YAML you can:

table_name: doctrine_migration_versions
migrations_directory: /path/to/migrations/classes/DoctrineMigrations
migrations:
 migration1:
 version: 20100704000000
 class: DoctrineMigrations\NewMigration

If you specify your own migration classes (like DoctrineMigrationsNewMigration in the previous
example) you will need an autoloader unless all those classes begin with the prefix Version*,
for example path/to/migrations/classes/VersionNewMigration.php.

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

toc.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

Welcome to Doctrine 2 Migrations documentation!

Reference Guide

		1. Introduction

		2. Migration Classes

		3. Managing Migrations

		4. Generating Migrations

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

_static/plus.png

reference/managing_migrations.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

3. Managing Migrations

Now that we have a new migration class present, lets run the status task to see
if it is there:

$./doctrine migrations:status

 == Configuration

 >> Name: Doctrine Sandbox Migrations
 >> Database Driver: pdo_mysql
 >> Database Name: testdb
 >> Configuration Source: /Users/jwage/Sites/doctrine2git/tools/sandbox/migrations.xml
 >> Version Table Name: doctrine_migration_versions
 >> Migrations Namespace: DoctrineMigrations
 >> Migrations Directory: /Users/jwage/Sites/doctrine2git/tools/sandbox/DoctrineMigrations
 >> Current Version: 2010-04-16 13:04:22 (20100416130422)
 >> Latest Version: 2010-04-16 13:04:22 (20100416130422)
 >> Executed Migrations: 0
 >> Available Migrations: 1
 >> New Migrations: 1

 == Migration Versions

 >> 2010-04-16 13:04:01 (20100416130401) not migrated

As you can see we have a new version present and it is ready to be executed. The
problem is it does not have anything in it so nothing would be executed! Let’s
add some code to it and add a new table:

namespace DoctrineMigrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

class Version20100416130401 extends AbstractMigration
{
 public function up(Schema $schema)
 {
 $table = $schema->createTable('users');
 $table->addColumn('username', 'string');
 $table->addColumn('password', 'string');
 }

 public function down(Schema $schema)
 {
 $schema->dropTable('users');
 }
}

Now we are ready to give it a test! First lets just do a dry-run to make sure
it produces the SQL we expect:

$./doctrine migrations:migrate --dry-run
Are you sure you wish to continue?
y
Executing dry run of migration up to 20100416130452 from 0

 >> migrating 20100416130452

 -> CREATE TABLE users (username VARCHAR(255) NOT NULL, password VARCHAR(255) NOT NULL) ENGINE = InnoDB

Everything looks good so we can remove the –dry-run option and actually execute
the migration:

$./doctrine migrations:migrate
Are you sure you wish to continue?
y
Migrating up to 20100416130452 from 0

 >> migrating 20100416130452

 -> CREATE TABLE users (username VARCHAR(255) NOT NULL, password VARCHAR(255) NOT NULL) ENGINE = InnoDB

 >> migrated

By checking the status again you will see everything is updated:

$./doctrine migrations:status

 == Configuration

 >> Name: Doctrine Sandbox Migrations
 >> Database Driver: pdo_mysql
 >> Database Name: testdb
 >> Configuration Source: /Users/jwage/Sites/doctrine2git/tools/sandbox/migrations.xml
 >> Version Table Name: doctrine_migration_versions
 >> Migrations Namespace: DoctrineMigrations
 >> Migrations Directory: /Users/jwage/Sites/doctrine2git/tools/sandbox/DoctrineMigrations
 >> Current Version: 2010-04-16 13:04:52 (20100416130452)
 >> Latest Version: 2010-04-16 13:04:52 (20100416130452)
 >> Executed Migrations: 1
 >> Available Migrations: 1
 >> New Migrations: 0

 == Migration Versions

 >> 2010-04-16 13:04:01 (20100416130452) migrated

3.1. Reverting Migrations

You maybe noticed in the last example that we defined a down() method which
drops the users table that we created. This method allows us to easily revert
changes the schema has been migrated to. The migrate command takes a version
argument which you can use to roll back your schema to a specific version of
your migrations:

$./doctrine migrations:migrate 0
Are you sure you wish to continue?
y
Migrating down to 0 from 20100416130422

 -- reverting 20100416130422

 -> DROP TABLE addresses

 -- reverted

 -- reverting 20100416130401

 -> DROP TABLE users

 -- reverted

Now our database is back to where we originally started. Give it a check with
the status command:

$./doctrine migrations:status

 == Configuration

 >> Name: Doctrine Sandbox Migrations
 >> Database Driver: pdo_mysql
 >> Database Name: testdb
 >> Configuration Source: /Users/jwage/Sites/doctrine2git/tools/sandbox/migrations.xml
 >> Version Table Name: doctrine_migration_versions
 >> Migrations Namespace: DoctrineMigrations
 >> Migrations Directory: /Users/jwage/Sites/doctrine2git/tools/sandbox/DoctrineMigrations
 >> Current Version: 0
 >> Latest Version: 2010-04-16 13:04:22 (20100416130422)
 >> Executed Migrations: 0
 >> Available Migrations: 2
 >> New Migrations: 2

 == Migration Versions

 >> 2010-04-16 13:04:01 (20100416130401) not migrated
 >> 2010-04-16 13:04:22 (20100416130422) not migrated

3.2. Writing Migration SQL Files

You can optionally choose to not execute a migration directly on a database and
instead output all the SQL statements to a file. This is possible by using the
–write-sql option of the migrate command:

$./doctrine migrations:migrate --write-sql
Executing dry run of migration up to 20100416130422 from 0

 >> migrating 20100416130401

 -> CREATE TABLE users (username VARCHAR(255) NOT NULL, password VARCHAR(255) NOT NULL) ENGINE = InnoDB

 >> migrating 20100416130422

 -> CREATE TABLE addresses (id INT NOT NULL, street VARCHAR(255) NOT NULL, PRIMARY KEY(id)) ENGINE = InnoDB

Writing migration file to "/path/to/sandbox/doctrine_migration_20100416130405.sql"

Now if you have a look at the doctrine_migration_20100416130405.sql file you will see the would be
executed SQL outputted in a nice format:

Doctrine Migration File Generated on 2010-04-16 13:04:05
Migrating from 0 to 20100416130422

Version 20100416130401
CREATE TABLE users (username VARCHAR(255) NOT NULL, password VARCHAR(255) NOT NULL) ENGINE = InnoDB;

Version 20100416130422
CREATE TABLE addresses (id INT NOT NULL, street VARCHAR(255) NOT NULL, PRIMARY KEY(id)) ENGINE = InnoDB;

3.3. Managing the Version Table

Sometimes you may need to manually change something in the database table which
manages the versions for some migrations. For this you can use the version task.
You can easily add a version like this:

$./doctrine migrations:version YYYYMMDDHHMMSS --add

Or you can delete that version:

$./doctrine migrations:version YYYYMMDDHHMMSS --delete

The command does not execute any migrations code, it simply adds the specified
version to the database.

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

reference/migration_classes.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

2. Migration Classes

As now everything is setup and configured you are ready to start writing
migration classes. You can easily generate your first migration class with the
following command:

$./doctrine migrations:generate
Generated new migration class to "/path/to/migrations/classes/DoctrineMigrations/Version20100416130401.php"

Have a look and you will see a new class at the above location that looks like
the following:

namespace DoctrineMigrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

class Version20100416130401 extends AbstractMigration
{
 public function up(Schema $schema)
 {

 }

 public function down(Schema $schema)
 {

 }
}

Sometimes you need to do some complex migration operations which force you
to use plain SQL statements. Using the addSql() method this is possible within any
migration class.

First you need to generate a new migration class:

$./doctrine migrations:generate
Generated new migration class to "/path/to/migrations/DoctrineMigrations/Version20100416130422.php"

This newly generated migration class is the place where you can add your own
custom SQL queries:

namespace DoctrineMigrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

class Version20100416130422 extends AbstractMigration
{
 public function up(Schema $schema)
 {
 $this->addSql('CREATE TABLE addresses (id INT NOT NULL, street VARCHAR(255) NOT NULL, PRIMARY KEY(id)) ENGINE = InnoDB');
 }

 public function down(Schema $schema)
 {
 $this->addSql('DROP TABLE addresses');
 }
}

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

reference/generating_migrations.html

 Navigation

 		
 index

 		Doctrine 2 Migrations 2.2 documentation »

4. Generating Migrations

If you are using the Doctrine 2 ORM you can easily generate a migration class
by modifying your mapping information and running the diff task to compare it
to your current database schema.

If you are using the sandbox you can modify the provided yaml/Entities.User.dcm.yml
and add a new column:

Entities\User:
 # ...
 fields:
 # ...
 test:
 type: string
 length: 255
 # ...

Be sure that you add the property to the Entities/User.php file:

namespace Entities;

/** @Entity @Table(name="users") */
class User
{
 /**
 * @var string $test
 */
 private $test;

 // ...
}

Now if you run the diff task you will get a nicely generated migration with the
changes required to update your database!

$./doctrine migrations:diff
Generated new migration class to "/path/to/migrations/DoctrineMigrations/Version20100416130459.php" from schema differences.

The migration class that is generated contains the SQL statements required to
update your database:

namespace DoctrineMigrations;

use Doctrine\DBAL\Migrations\AbstractMigration,
 Doctrine\DBAL\Schema\Schema;

class Version20100416130459 extends AbstractMigration
{
 public function up(Schema $schema)
 {
 $this->addSql('ALTER TABLE users ADD test VARCHAR(255) NOT NULL');
 }

 public function down(Schema $schema)
 {
 $this->addSql('ALTER TABLE users DROP test');
 }
}

The SQL generated here is the exact same SQL that would be executed if you were
using the orm:schema-tool task and the –update option. This just allows you to
capture that SQL and maybe tweak it or add to it and trigger the deployment
later across multiple database servers.

 © Copyright 2010-12, Doctrine Project Team.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

